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Abstract

A Radiative Transfer Model (RTM) simulates the interaction of light with a medium. We are interested
in RTMs that model light reflected from a vegetated region. We study the Leaf Canopy Model (LCM)
RTM, which was designed to explore the feasibility of observing leaf chemistry remotely. The inputs
to the LCM are leaf chemistry variables (chlorophyll, water, lignin, cellulose) and canopy structural
parameters (leaf area index (LAI), leaf angle distribution (LAD), soil reflectance, sun angle), and the
output is the upwelling radiation at the top of the canopy. In this work, we address the following
question: which of the inputs to the RTM has the greatest impact on the computed observation? To
answer this question, we employ a Bayesian Gaussian Process approximation to the LCM output using
Markov Chain Monte Carlo (MCMC) simulation. Then, we analyze the “main effects” of the inputs
to the LCM in terms of the sensitivity of the LCM’s output to each of the inputs. We apply this
method to 7 inputs and output obtained at 667 nm and 1640 nm wavelengths, which are associated
with MODIS (a key instrument aboard the Terra and Aqua satellites) spectral bands that are sensitive
to vegetation.

Introduction

e The LCM was developed in order to capture the essential biophysical processes associated with the
interaction between light and vegetation by combining two different radiative transfer algorithms.

e LEAFMOD simulates the radiative regime inside the single leaf, and CANMOD combines the in-
formation coming from LEAFMOD with canopy structural parameters to compute the radiative
regime within and at the top of the canopy.
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FIGURE 1: Flow chart demonstrating the operations of the coupled algorithm of the LCM

e The LAD variable is set to planophile (leaves mostly horizontal), and the sun angle is set to zenith.
e Input variables: Chlorophyll, water, thickness, lignin, protein, LAI, and soil reflectance.

e Qutput: y = f(v) is hemispherical reflectance, which is the LCM output to the inputs listed
above and denoted by v = (v, v9, ..., v7).
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Global Sensitivity Analysis

e Output tunction Decomposition:
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e The global mean is given by E (y) = [, f (v) dH (v), where H (v) is the distribution of the inputs.
Based on related literature, we use independent uniforms over the ranges of the inputs.

e The main effects are given by z;(v;) = E (y|v;) — E (y) = f'v_i f(v)dH (v_;|v;) — E (y), where
v_, denotes all the elements of v except v;.

e The later terms of the decomposition are the interactions, which give the combined influence ot two
or more inputs taken together.

e Computing the main effects requires the evaluation of multidimensional integrals over the input
space of the model, and evaluating RT'Ms can be computationally expensive.

e We use a Gaussian Process (GP) approximation to the RTM output, a technique known in statistical
literature as emulatzon. This approximation allows for evaluating the main effects analytically.

Bayesian Model for the Gaussian Process

e A GP is a stochastic process that generates a collection of random variables, any finite number of
which have a multivariate normal distribution.

e Given the input v = (vy,v9,...,v7), a GP, f(v), is fully specified by its mean function, u (v),

and covariance function, C (fv, v’ ) — 2R (\’v — v D, which is taken to be isotropic with constant
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variance 7° and a correlation function, R (\’v — ])

e Consider the exponential correlation function:
7
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e Assume the data, D = {y;, ®; = (v;1,x59,...,2;7) -1 =1,2,3,...,n}, are a sample from a GP
(i.e. we are approximating the function y = f (v) by a GP).

e We place priors on the parameters of the GP, u, 72, and ¢;, for j ={1,2,...,7}, as follows.

i~ N (ay,by,) 72 ~ Inv.Gamma (ar, by ) ¢; ~ Unif (O, b¢j) (3)

e Using MCMC simulation, we obtain samples of P (9, (L, = qb]D), which is the joint posterior dis-

tribution of i, 72, ¢ = (¢1, P, ..., d7), and @ = (f (x1), f (x2), ..., f (xn)).

e Calculating the main effects requires computing E*{FE (y|v;) |D} and E*{E (y)|D}, where
E*{-|D} indicates the expectations with respect to the GP posterior predictive distributions.

E{E ()0} = [ (+ TTR1(6 ~ L)) dP (6.7 ¢ID) . g
And for each value u; of the j-th input, we have:
E*(E(wlu) 1D} = [ (u+ T] ()R (6~ 1)) dP (6.10.7 ¢ID) 5

where 7" and Tj(uj) are n X 1 vectors that are functions of the input space and of ¢, and R is the
observed correlation matrix.
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FIGURE 2: The main effects for the LCM at wavelength 667 (nm).

Main Effects at Wavelength 1640 (nm)
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FIGURE 3: The main effects for the LCM at wavelength 1640 (nm).

e The slope of each main effect gives information as to whether the output is an increasing or decreasing
function of that input.

e For example, at wavelength 667, the LCM is most sensitive to LAI and chlorophyll, which have
nonlinear effects, and an increase in LAI or chlorophyll produces a decrease in reflectance.

Discussion and Future Work

e We have implemented a Bayesian approach, via MCMC methods for the GP emulator, to obtain
point estimates for all the main effects associated with the 7 inputs. To quantify the uncertainty
introduced by the GP approximation of the LCM, we will obtain Var* {E (y|v;) |D}.

e Using a fully Bayesian approach, we will obtain distributions (rather than point estimates) of the
main effects associated with the 7 inputs at 8 MODIS bands as well as “sensitivity indices”, which
give a measure of how much of the variance of the output is due to each input.

e We will also develop a hierarchical Bayesian model accounting for all 4 LAD classifications using a
hierarchical GP formulation for the corresponding output functions f; (v), for j =1,2,3,4.
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